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Laboratory analogues of theoretical models of wind-driven ocean circulation are 
based on ideas presented by Stommel(1957). A particularly simple demonstration 
of the applicability of these ideas is contained in a paper by Stommel, Arons & 
Faller (1958). The present work develops the source-sink laboratory analogue of 
ocean circulation models to a point where chosen parametric values allow one to 
simulate the theoretical models of Stommel(l948) and Munk (1950) exactly. The 
investigation of the flow in a rotating cylinder generated by a source of fluid near 
the outer wall leads to a detailed description of the roles of the various boundary 
layers which occur. This knowledge is used to analyse the more complex source- 
sink flow in a pie-shaped basin. The laboratory analogue to the Stommel circu- 
lation model is analyzed iii detail. It is shown that the change in the flow pattern 
brought about by a radial variation of the position of the eastern boundary in 
the pie-shaped basin is confined to the interior flow and the boundary layer is 
largely unaffected. When the bottom of the pie-shaped container slopes, the 
circulation pattern is changed significantly. For the particular case treated, the 
depth of the basin along the western boundary is unchanged and the maximum 
depth occurs at the southeast corner. The circulation generated by a source 
introduced at the apex of the pie has a gyre whose centre is shifted more toward 
the southwest corner than the corresponding centre of the gyre for a flat-bottomed 
basin. Two experiments are reported showing that the western boundary may 
separate because of the effect of bottom topography or because of the pressure 
of a cyclonic and an anti-cyclonic gyre generated by suitably placed sources and 
sinks. 

1. Introduction 
Consider a container of fluid which is rotating with a constant angular velocity 

about a vertical axis (z) .  The free surface of the fluid assumes a paraboloidal shape 
because of the balance of gravitational and centrifugal forces. Stommel (1957) 
pointed out that this variation in the depth of the fluid in a laboratory experiment 
serves to simulate the @-effect (the effect due to latitudinal variation of the 
Coriolis parameter) in the ocean. 

It has long been recognized that the effect of a wind-stress at the surface of the 
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ocean is transmitted to the underlying fluid via an Ekman layer. When the wind- 
stress has a horizontal variation, the Ekman layer sucks fluid up from, or pumps 
fluid down into, the main body of the ocean. Hence, in a laboratory model the 
effect of a wind-stress can be simulated by a suitable source-sink flow. 

Stommel, Arons & Faller (1958) took advantage of these analogies to set up an 
experimental demonstration of large scale ocean circulationin a laboratory model. 
Using geostrophic balance for the dynamics in the interior of tho basin, they 
presented an elegant and simple analysis for the gross features of the circulation. 

An investigation into the structure of the various boundary layers in the 
laboratory model reveals additional features which relate to  the theoretical wind- 
driven circulation models of Stommel(l948) and Munk (1950). The present study 
is devoted to a discussion of these features, and to a re-examination of the flow in 
the light of roccnt dovelopmcnts of source-sink flow (Barcilon 1967; Hide 1967) 
and t,lie general theory of rotating fluids (Greenspan 1968). 

It is not our purpose to present a mathematical derivation of the different 
boundary layers that  occur in rotating flows. However, i t  is necessary to make 
liberal use of the properties of these boundary layers. Therefore, the reader who 
wishes to verify the details must be familiar with the role of the Ekman boundary 
layer at tho top and bottom of the basin and with the Stewartsoii boundary 
layers a t  the side walls. Greenspan’s (1968) book contains a thorough treatment 
of these boundary layers. 

In $ 2  the equations for the source-sink flow are presented, and the essential 
features of the model are highlighted. The nature of the flow and the role and 
function of the different boundary layers are discussed in § 3, where all of the 
ossential properties of the different boundary layers are used in order to  analyse 
tho flow in a cylindrical container with a single source a t  the wall. With Ir: denoting 
tho Ekman number (defined in $ 2 ) ,  it is shown that tho O(E*) upweIling velocity 
in the interior induces an O( 1) swirling flow, which is brought to  zero at, the side 
wall by a Stewartson layer of thickness Ei.  Although the lowest order flow is 
thereby accounted for, a thorough understanding of the flow pattern is possible 
only by including an analysis of the E* layer a t  the side of the basin. 

The detailed analysis of the flow in a cylinder brings out the essential manner 
in which the fluid progresses from its initial entry into the basin to its final swirling 
rise in the interior. The vertical redistribution of the entering fluid via the Ef 
layer and the subsequent flow into the E )  layer, and thence to  the Ekman layer 
at the bottom, are necessary parts of the indirect circulation which leads t o  the 
upwelling of the free surface. 

With the understanding gained from the detailed treatment in S 3, i t  is possible 
in 9 4 to  restrict the analysis of the flow in a pie-shaped basin t o  those features 
which are of most interest in the simulation of oceanic circulation. It is shown 
there that when the Frouda number F is O( 1) the model of the laboratory situation 
is the mathomntical analoguc of Munk’s (1950) wind-driven circulation model. 
The interior radial flow is determined by an equation which resembles the 
Sverdrup transport equation. Side-wall boundary layers are necessary to  satisfy 
the dynamical boundary conditions. When E: < 3’ < Ea, the interior flow is 
satisfied by an oquation which looks much like Stommel’s (1948) equation for 



The source-sink $ow in a rotating system and its oceanic analogy 443 

wind-driven circulation, where the frictional force is assumed to be proportional 
to the velocity. The analysis that we present for this problem includes a sub- 
boundary layer to satisfy the non-slip condition at the wall, as well as a boundary 
layer at  the radial (southern) wall. 

We should mention here that calculations making use of variations of bottom 
topography for laboratory simulation of ocean circulation have been made by 
Pedlosky & Greenspan (1967) and by Beardsley (1969). However, we have made 
use of the paraboloidal shape of the free surface in order to simulate the p-effect 
for oceanic models, and we have reserved the variation of bottom topography to 
describe the analogous situation in nature. In  this sense our simulation differs 
from that of the above authors. But our method of analysis does not differ sub- 
stantially from theirs, and some of our results have been anticipated by Beardsley. 

An investigation into the dynamical consequence of variations in the shape of 
the containing boundaries begins in 5 4 with the study of the effect of a curved 
eastern boundary on the interior flow. The direction of the flow in the interior is 
completely determined by the shape of the eastern boundary. A simple analysis 
leads to the main features of the interior flow, and we show further that the 
intense western boundary flow is largely unaffected by the geometry of the 
eastern boundary. 

That bottom topography can exercise a controlling influence on the flow 
pattern is well known. By introducing a small, uniform slope to  the bottom 
boundary, we introduce a particularly simple example of the effects of bottom 
topography into the investigation. The interior flow pattern and the boundary 
layers are analyzed for the lowest-order solution. In  this connexion it should be 
noted that the effects of topography manifest themselves principally via the 
change in the depth of the fluid so that in this way the role of bottom topography 
is similar to that of the paraboloidal free surface. However, the identification of 
the latter with the p-effect allows one to treat the two effects as separate ones 
and for physical purposes that is advantageous. 

Section 5 contains experimental studies of the problems analysed in 9 4 and 
a comparison between theory and experiment is presented. The agreement 
between the two is quite good with most discrepancies of the order of 10 % or 
less. The agreement in the boundary layers indicates that the more significant 
characteristics of the flow have been successfully analyzed. The interior flow 
patterns of the theory are all consistent with the experiments. Ih  particular, the 
predicted differences determined among basins with uniform boundaries, with 
curved eastern boundaries and with varying topography, are all observed. 

We conclude the study with two experimental models that contain features 
which can give rise to the separation of the western boundary current from the 
coast. A model with a sloping bottom confined to a corner of the basin shows that 
separation as predicted by Warren (1963) and Holland (1967) aotually occurs 
experimentally. In  the second model a source and a sink are introduced at 
interior locations. They are meant to simulate wind-stress gyres which are 
respectively cyclonic and anti-cyclonic. The results show that the two con- 
verging western boundary currents leave the coast when they meet and are 
directed into the interior. 
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2. Mathematical formulation 
2.1. Basic equations 

Consider a container of fluid rotating about the vertical (2) axis with uniform 
angular velocity Q (figure 1). The steady, linearized, non-dimensional equations 
of motion for a viscous incompressible fluid written in terms of the rotating frame 
of reference are 

(2.1) 

v.v  = 0, ( 2 . 2 )  

2k x v = - Vp +- EV'V, 

where E = u/Qn2 is the Ekman number and v is the kinematic viscosity. Lengths 
are scaled in terms of the radius a of the container. The pressure is scaled by 
pQau* where p is the density and u* is a characteristic velocity which will be 
related to the upwelling of the free surface when a source is introduced. 

Source JJ 

FIGURE 1 .  Tho goiicral configuration of the source-sink flow in a rot,ating container. 

The height of the paraboloidal free surface associakd with pure, rigid-body 
rotation is written in terms of cylindrical co-ordinates ( r ,  0, z )  as 

(2.3) 

where ho is the height of the fluid at  the axis of rotation and g is gravitational 
aeeeleration. The equation for the free surface is 

2 = h(r)  + 6(r ,  0, t ) ,  (2.4) 

where { ( r ,  0, t )  is the change of height of the surface due to  the influx from the 
source. If particles initially on the free surface remain there, the linearized free 

(2.5) 
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The linearized boundary condition for the flow in the container when a constant 

(i) At z = h, 
source flow is introduced are as follows : 

(2.6) w = Fru + [, 
where F = Pa/gis  the Froude number and is considered in the range Eo 2 P 2 EB 
and c = a</:lat is constant. For a linear problem it is necessary that c = O(E4). 

(ii) At the bottom ( z  = 0) of the container, 

v = 0. (2.7) 

v = 0. (2.8) 

(iii) At the side walls of the container, 

(iv) A transport condition associated with the influx from the source will be 
specified later. 

2.2. Interior $ow 
Let the solution of equations (2.1) and (2.2) under the boundary conditions 
(i), (ii), (iii) and (iv) consist of an interior part (indicated by subscript I) which 
holds throughout the entire region, and a boundary-layer part (with subscript b 
for bottom boundary layer and s for side-wall layer), which add to the interior 
solution to meet the required boundary conditions and which decay with distance 
from the boundary. The solutions are obtained by standard asymptotic expansion 
in terms of the Ekman number. The results for the interior flow can be summarized 
as follows: 

(i) To O(E) the interior flow obeys the geostrophic and hydrostatic relations, 

(2.9) 2k x v, = -vp,. 

(ii) The interior vertical velocity wI is O(E4) and is independent of x .  
(iii) The boundary condition at the free surface for the interior flow is derived 

(2.10) 
from (2.6) as, 

where [ is O(EB). The condition at the bottom is obtained from the well-known 
Ekman boundary-layer theory and can be written as, 

at z = h, wI(r ,  6 ,  h)  = Pru, + c, 

at z = 0, w,(r,6,0) = . (2.11) 

Since by statement (i) wI is independent of z ,  the following relation holds: 

W A Y ,  8, h) = W I ( T ,  670). (2.12) 

Accordingly, by statement (iii), 

In  terms of pressure, (2.13) can be written as 

(2.13) 

(2.14) 
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Since the vertical velocity is O(EB), the above equabian holds when F is O(E4). 
In  this case, uI is O(E0). When P is O(EO), uI should be O(E4) as indicated by 
(2.10) and, if vI < O(EB), the value of wI at x = 0 is O(E). Therefore, it follows 

Pru, + g = 0, 
from (2.10), that 

or apIias = 2 g p .  (2.15) 

When ths interior flow is axisymmetric, both uI and ap,/ae will vanish. The 
governing equation of the interior flow is then 

or (2.16) 

This equation is applicable t o  certain flows in a right cylindrical container. 
If EB Q 2 P  Q 1, equation (2.14) can be used for the interior flow. Enough 

arbitrariness is present to satisfy the condition that the normal velocity vanish 
at the boundaries. However, the non-slip condition cannot be satisfied. Equation 
(2.14) and the pertinent boundary conditions combine to make this problem the 
exact laboratory analogue of Stommel's (1948) model of the wind-driven ocean 
circulation. When F is O(Eo), equation (2.15) describes the flow in the interior of 
the basin. This equation is analogous to the Sverdrup (1947) transport equation 
on the /?-plane. When side-wall viscous layers are added, the resulting prohlam 
takes the exact form of Munk's (1950) model for the wind-driven ocean circul a t' ion. 

Before going on to discuss these source-sink analogues to ocean circulation, 
we shall examine the flow in a cylindrical Container in detail, so as t o  understand 
the physical nature of the side-wall viscous layers. 

3. The source-sink flow in a cylindrical container 
3.1. Interior $ow 

Let a source be introduced at r = 1 and 8 = 0 at  the side wall of a cylindrical 
container. The interior flow is axially symmetric to O(Eg), and is governed by 
(2.16). The solution obtained under the conditions that the velocity be finite at 
the centre, and that there be no influx at  the side wall, is 

p ,  = g/E4(r2- 1). (3.1) 

vI = <r/EB, uI = 0. (3.2) 

The corresponding velocities are 

Tho interior solution gives an O(Eo) zonal velocity, which does not vanish at 
the side wall. Viscous boundary layers are required, SO that the non-slip condition 
can be satisfied at  the wall. The O(Eo) interior pressure is independent of 8, and 
the O(Eo) radial velocity vanishes. However, the lion-uniformity of the source 
in the 8 direction will introduce an O(Ei) radial flow. Hence, a more general form 
€or the interior pressure should be written as 

p I  = QEi(r2- 1) +E4p1(r, 8))  (3.3) 
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where the last term represents the O(E8) correction to the interior flow and 
p l ( e )  is O( 1). The detailed discussion of the nature of the viscous boundary layers 
and the O(E4) correction to the interior flow are given below. 

3.2. Side-wall viscous boundary 

Viscous boundary layers must be added to the interior solution in order to meet 
the conditions at  the side wall. A detailed discussion of these boundary layers in 
rotating fluids is contained in Greenspan (1968). Here, we simply outline pro- 
perties of the boundary layers which are pertinent to the flow being considered. 

The azimuthal velocity (3.2) does not satisfy the non-slip boundary condition 
at  the wall. The latter condition is met by adding a viscous boundary layer of 
thickness Ei.  The magnitude of the variables in the E i  layer are 

P, N O(E)), zc, N O(EB), v, N O(Eo) and ws N O(E)). 

In  the interior, the azimuthal flow is independent of the vertical co-ordinate. 
The non-uniformity of the source in the x-direction is taken care of by a viscous 
boundary layer of thickness E*, whose variables have the following magnitudes : 
P, O(Eg), v, N O(E*) and w, N O(E2). The E* layer also serves to 
bring the lowest-order vertical velocity to  zero at the side wall. If the source is 
non-uniform in the 6 direction, an O(E4) radial flow will be induced in the interior, 
and the O(E8) radial velocity from a side-wall boundary layer will combine with 
it to satisfy the boundary condition of vanishing radial velocity at  the wall. 

Following Greenspan (1968), we shall treat the E )  and Eilayers simultaneously 
via the following equations for the side-wall layers: 

O(EB), us 

(3.4) 

where 7 = r - 1. At the top and bottom of the side-wall layers, the flow is deter- 
mined by Ekman boundary layers. A source given by T(1, 0, z )  is assumed to 
inject fluid into the container through the side wall. 

The boundary condition for the above equations can be obtained as 

(3 .5 )  I (i) at z = h, W ,  = O+O(Et); 

(ii) at  z = 0, W ,  = $E4-(a2ps/ar2); 

w, = 0; 

u.=- + ~ t ( a ~ , / a e ) + ~ ,  = - ~ , ( i , e , ~ ) .  

(iii) a t  7 = 0, V ,  = - vI( 1,6) = - + O(Ei);  

(iv) at 7 = 0, 

Here, we have made use of the Ekman layer near z = 0 to derive equation (ii). 
Relations (iii) and (iv) describe the condition that the total velocity vanishes a t  
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the wall except at  the inflow point. The relation between the total transport Q, 

and Q is of O(E4). If a concentrated line source is located at  the point r = 1 and 
0 = 0, the source function T (  1 ,8 ,  x )  can be regarded as a delta function a t  the 
point. 

The solution of (3.4), together with the boundary conditions (i), (ii), (iii), is 
easily derived from thegeneralsolution to (3.4) given by Groenspan (1968, p. 112) ,  
who made use of the method introduced by Stewartson (1957)  : 

j .  P , ~  = 2(Eh2): - exp [ - (Eh2)-; (1 - r)] E’: 

( 3 . 7 )  

Zn2 h nm . ‘j -s T(1,0,x)cos-sin IcUdzdO, 
7 J o h , o  h 

The terms with exponential factor (Eh2)-i describe tfhe behaviour in the 
layer, and those with yn give the form for the pressure in the E: layer. The E i  
layer brings the zonal velocity to zero at  the side wall, and the E* layer adjusts 
the non-uniformity of the source in the x-direction and brings the lowest-order 
vertical velocity to zero at  t,he side. 

The requirement set by boundary condition (iv) on us, together witjh the 
solution of p,, gives the following relation for p , :  

where (3.9) 
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Since [ = &I;. the term [/2h = &/2nh represents the O(E6) uniform radial velocity 
of the E t  layer at  the wall. The equation indicates that the non-uniformity of the 
source in the &direction is adjusted by the O(E4) interior flow. 

3.3. The O(Ei) correction to the interior $ow 

The analysis in the previous section shows that a non-axisymmetric O(E4) interior 
horizontal flow is necessary to adjust the non-uniformity of the source in the 
&direction. The equations for the O(E4) correction to the interior flow can be 
derived from the results obtained in 3 (2. I ) ,  because the interior is geostrophic to  
O(E).  In  this case, p1 is determined by 

(3.10) 

where E = Eil2F. For simplicity, we shall treat the case E < 1, since all of the 
required information can be obtained more simply. 

The solution of (3.10), together with the boundary condition (3.8), is obtained 
by asymptotic expansion. The 'inijerior ' solution of (3.10) is obtained by dropping 
the term with e, so that 

which has the solution p1 = f ( r ) ,  and represents an O(E4) correction to the zonal 
velocity. But the O(Eo) zonal velocity has already been determined, and our 
present interest is in completing the solution to include the largest contribution 
to the radial velocity. It is the latter which is necessary to adjust the non- 
axisymmetric source flow to the interior region. Hence, we discard f ( r ) .  

To determine the O(E4) radial velocity, we stretch the radial co-ordinate near 

ap,lae = 0, 

r = l b y  

and (3.10) reduces to 
ajar = E-8 apt, r - 1 = c+(, 

a t 2  a0 
% + ?fi = 0 + O(E4). 

This equation is solved by Fourier series. The final result reads 

(3.11) 

(3.12) 

p 1  = C m e x p [ - d z ( l - r ) ]  ([NncosJ~(l-r)-Nnsin~~(~-~)]sinn6 

n= 1 26 

+ F n c ~ s J "  2E ( l - r ) + N n s i n ~ ~ ( 1 - r ) ] c o s ~ 6  

where 

This O(Ei)  interior horizontal flow is induced by the non-uniformity of the 
source in the @-direction, and balances the radial flow of the Efr layer at  the side 
wall. The non-uniformiby of the source is therefore smoothed out by the O(E4) 
interior horizontal flow in a frictional layer of thickness €3 at the side wall. When 
E is 0(1), the solution corresponding to (3.13) is expressed in terms of Bessel 
functions, and the flow exists throughout the interior. 

29 F L M  45 
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A schematic picture of the source-sink flow is exhibited in figure 2. The trans- 
port of O(E4) enters the tank and is distributed vertically in the E )  layer, which 
smooths out the non-uniformity in the x-direction. The fluid flows into the EB 
layer, and then to the bottom Ekman layer, from which it flows upward into the 
interior as the free surface rises. The O(E4) upwelling velocity of the interior 
induces a swirl velocity of O( 1). The swirl velocity is brought to zero at the side 
wall by the E )  layer. The vertical velocity of the lowest-order ( E t )  is adjusted to 
zero at  the side wall by the E* layer. The non-uniformity of the source in the 
8-direction causes an O(EP) interior horizontal flow. 

1 Source 

Ef 

I I I 

’ E h a n  layer (E*) 

FICX-RE 2. The general results of the source-sink flow in a rotating cylindrical container. 

4. The source-sink flow in a pie-shaped basin 
4.1. T h e  interior and boundary-ZayerJlows 

In 5 2 we established the fact that the equations which determine the flow in 
a pie-shaped basin depend on the Proude number P. When P = O(E0) the flow is 
determined by the laboratory analogue (2.15) of the Sverdrup transport equation 
and, when viscous side-wall layers are added, the boundary-value problem takes 
the form of Mnnk’s model of wind-driven ocean circulation. When EQ + P $ Et,  
the effects of bottom friction are confined to a region of O ( E s / Z S )  near the outer 
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wall. To satisfy all the boundary conditions at the side wall, it is necessary to add 
an E )  Stewartson layer, whose thickness was found (from 3 3) to be (Eh2)*. Hence, 
from the ratio of these two thicknesses, the Stewartson layer can be regarded as 
a sub-boundary layer if Etl2Ph4 $- 1. In  this case, the lowest-order problem for 
the interior flow is the exact laboratory analogue to Stommel’s model of the wind- 
driven circulation of the ocean. That is the problem on which we shall focus our 
attention here. 

The equation for the interior flow given by 

E = Esl2F < 1, (4.2) 

together with the boundary condition p ,  = 0 along the side wall, will be solved 
by the method of singular perturbation (Cole 1968). If p I  and its derivatives are 
of the same order, (4.1) can be written to O(s)  as 

The solution is 
apI/a8 = 2lIF. (4.3) 

(4.4) 
2j .  

PI = , e + m  
There is obviously not enough arbitrariness to satisfy the boundary conditions. 

Hence, the condition that p I  and its derivatives be O(Eo) must be relaxed. 
Proceeding in the usual manner, we stretch the co-ordinate near 8 = 0 as 

and can reduce (4.1) to 
1 a 2 p I  apI 
r2  aE2 i3g 

+- = O + O ( E ) ,  -~ 

with the solution p I  = A(r)  e-@’ + B(r), (4.7) 

where the overbar corresponds to the Stommel boundary-layer contribution. The 
sum of the solutions (4.4) and (4.7) can satisfy the boundary condition at  8 = 0 
and 8 = 8, to order E .  The appropriate solution is 

(4.8) p I  = - [ ( O  - 8,) + 8, exp ( - r28/e)] .  

The boundary layer described by the exponential term corresponds to Stommel’s 
side boundary layer. It is due to the concentrated effect of bottom friction near 
the western (8 = 0 )  boundary. We shall refer to it as the Stommel boundary 
layer. 

At r = 1, and outside the boundary layer near 8 = 0, the above solution gives 

2j. 
P 

2 l  P I  = - (8 - 8,). 
F (4.9) 

A bottom, frictional layer must exist also near r = 1 to bring p ,  to zero. With 

(4.10) 

29-2 
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(4.11) 

The inhomogeneous solution is given by (4.9). A solution for the homogeneous 
part of the equation is required to bringp,, to zero a t  r = 1.  This is done by seeking 
a similarity solution of the type, 

for the equation 

(4.12) 

(4.13) 

where G ( y )  = 1, a t  y = 0 (i.e. 7 = 0 or r = I), 

G ( y )  -+ 0, as y -f 03 (i.e. 7 ->a), 

with k (0 )  = [2(e,-e)]-*, y = (l-?")[2€(O0-d)]-h (4.14) 

and ~ ( 7 )  = ~ X P  ( - 7214) w. (4.15) 

The equation (4.13) yields 
P"(y)  - (p + *yZ) P ( y )  = 0, (4.16) 

whose solution can be written in terms of Weber's parabolic cylinder functions, 
which have been studied quite thoroughly by Miller. The solutioii of (4.16), 
t,oget,her with the boundary conditions given above may be written in standard 

22 
form as 

F ( y )  = - U(i . , y ) ,  (4.17) 

mhcre ZJ(4, y )  is one of the standard Wober's functions which converges to  zero as 
y + 0. It, is related to the notation of Whittaker by 

Jn 

U ( $ , Y )  = D-z(Y). 

The niathematical form and numerical values of U(q ,y )  are summarized by 
Miller in Abramowitz & Steguii (1965), and will not be reproduced here. 

The total solution for the interior can be written as 

The prossure field represented by (4.1s) and calculated for F = 3.19 x 
E = 2 x 10-5 is shown in figure 3. The pressure field given by (4.8) corresponds to 
the stream function in Stommel's oceanic model. 

The foregoing solution is the basic one for the pie-shaped basin. However, the 
solution does not satisfy the non-slip condition along the side walls. A Stewartson 
layer of thickness EB must be added to bring the tangential velocity to zero along 
the sides, B = 0 and 8 = 19,. The ZCi layer derived earlier must be modified in order 
to  include the effects of the strong radial flow near the side walls and of the 
paraboloidal free surface. 
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Denote the variables in the Eb layer by a tilde. Then the free surface condition 
in the E i  layer takes the form, 

at  x = h, iZ = Fr6. (4.19) 

FIGURE 3. The normalized pressure field p/ (pRa&/A)  of the source-sink flow 
in a pie-shaped basin (a  = 20 cm, 0 = 60"). 

The boundary-layer equations in this case are 

(4.20) 

l a  1 aa aiz 
~ - ( rC)+- -+- = 0, 
r ar r ae ax 

where .ii = u,, + E*ul, v" = E b ,  + Eb, ,  fj = E*p0 + E&p1, 65 = E h , .  The system is 
closed when subscript 1 variables are taken into account.-/- The resulting equation 

t It should be noted here that this system contains normal velocities of  O(E*),  whereas 
the axisymmetric systcm discussed earlier has normal velocities of  O(E4).  This is a basic 
difference bctween the two systems. 
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for the lowest-order pressure is obtained from (4.20), together with (4.19) and bhe 
Ekmaii-layer contribution (2.1 l), and takes the form, 

(4.21) 

If theE’ilayerisasub-boundarylayerwithinthc Stommel boundarylayer, (4.21) 
can be solved in t’wo parts, with the last two terms balancing within the Stommel 
boundary layer, and the first two terms forming the balance in the inner, 3 5  layer. 
However, when F E i ,  as in our experimental situation, the Stommel boundary 
layer and the ‘sub-boundary ’ layer have the same thickness, and it is necessary 
to treat the two together, i.e. to solve (4.21) with (4.4) as the interior solution. 

I n  this case, (4.21) has two modes near 8 = 0, which decay with increasing 0, 
and one mode near 8 = O,, which decays with decreasing 8. The solution near 
0 = 0 has oscillatory decaying modes when the discriminant, 

is positive and monotonically decaying modes when D is negative. In either case. 
the solution, correct to  O(E4) and satisfying the boundary conditions 

C(Y, 8 )  + u I ( y ,  8)  = 0 and 

at  8 = 0 and O,, can be obtained. (The quantities uI and vI in these boundury 
conditions are obtained from (4.4).) The oscillatory decaying modes correspond 
to Miink’s ( 1  950) ocean circulation model. For the experimental situation 
described in 3 5. I, the solution near 8 = 0 has exponentially decaying modes in 
the region where we compare theory and experiment. The solution for the interior 
region and the Ei layers near 0 = 0 and H = 8, is 

6(r,  8 )  + v J r .  0) = 0 

where 2 
a, = -- 

Brh 
(Eh2)“ 

cos 3e = 

(4.23) 

(4.24) 

A correction near r = 1, similar to the one in 3 3 for the symmetric flow, can be 
added to sat,isfy the non-slip condition. Since the form of this correction is already 
known, we shall not present the solution here. Instead, we now go on to  include 
variations in the shapes of the boundaries, in order to determine the effects 011 
the flow patterns. 



T h e  source-sink flow in a rotating system and i t s  oceanic analogy 455 

4.2. Effect of a curved eastern boundary 

The source-sink flow in a pie-shaped basin with a curved eastern boundary, in 
which bottom friction dominates, is to be examined here, in order to determine 
the effect on the interior flow. If the eastern boundary is expressed as 

63 = 8og(r), 

the solution corresponding to (4.18) can be written as 

(4.25) 

(4.26) 

for the flow outside the western and southern E* layers. The interior velocity 
reads: 

(4.27) 

Hence, the curved eastern boundary will induce a zonal flow. The direction of the 
interior flow away from the Stommel boundary layer is 

(4.28) 

The effect of the curved eastern boundary on the intense flow in the western 
Stommel layer can be determined from (4.26). The velocity components are 

(4.29) I g(r)  exp ( - r28/e) - 

. 
E dr 

As indicated by (4.29), the radial and zonal velocities in the intense western 
boundary flow depend on the shape of the eastern boundary (O,g(r)). The influence 
of the function B,dg/dr is present only in the zonal velocity. For the interior flow 
away from the western boundary, the zonal flow induced by the term B,clg/dr is 
of the same order as the radial velocity. Thus, the direction ofthe flow is influenced 
significantly by the curved eastern boundary as shown by (4.28). For the intense 
western flow, the radial velocity is O( l/s) (e  in the oceanic case) larger than 
the zonal velocity. Therefore, the effect of the curved eastern boundary on the 
direction of the western intense current through the influence of 8,dg/dr on the 
zonal velocity is of relatively minor importance. 

4.3. Effect of a sloping bottom to the source-sinkflow 

Consider a pie-shaped container tilted as shown in figure 4. When the base of the 
container is tilted, the interior flow will be modified by the boundary condition 
at the bottom. The base of the tank is bounded laterally by r = 1, 8 = 0 and 
8 = 8,. The tilting angle of the slanted basin is a, and the co-ordinate of the base 
is h’ = r sin 8 sina. The condition at  the bottom for the interior vertical flow is 
obtained under the assumption that the tilting angle a is so small that the hori- 
zontal velocities of the interior can be considered parallel to the slanted bottom. 
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These are usedin calculating the flux of the Ekmanlayer. With the approximation 
cosa T 1, sina T a the Ekman layer flux a t  z = h’ is 

- (uz sin O+ iuI cos 0) a. (4.30) 

The equation for the interior flow depends on the Froude number, whose 
magnitude is restricted as in f j  4.1. Equating the vertical velocity from the Ekrnan 
layer to that given by (4.30) yields 

J 
FIGURIC 4. A porspcctive view of the pie-shaped container with a slnping hottnin. 

The solution satisfying the boundary condition p I  = 0 at the sides is obtained by 
the singular perturbation method of f j  4.1. The result reads: 

(a  cos O)/P (a  COB H,)/F 
(a2/F2 + r2 + Bar sin 0/4 , )z - s i r 1  (a2/PZ + r2 + 2ar sin /I/@ 

1 (a  cos O)/F 
(a2/F2+r2+ 2ar cos O/F)& 

(a  cos 8,)/F + sin-] (a2/F2 + r2 + 2ar cos O/F): 

x exp [ - (a  COB 8 )  (1 - r) /eF] . (4.32) 

This solution has a forni which is considerably inore complicated than is the 
corresponding solution given by the first two parts of (4.18). However, 
the complication arises only because of the depth variation associated with both 

1 



The source-sink $ow in a rotating system and its oceanic analogy 457 

the paraboloidal free surface and the sloping bottom. Theinterior solutionconsists 
of the terms which involve neither the erfc nor the exponential terms. It is simply 
a flow from the deepest (south-eastern) corner of the basin to shallower regions. 
The boundary-layer solution required to bring the normal velocity to zero at  
0 = 0 and Oo is given by the erfc terms. In  the limit a + 0, it  reduces to the simple 
exponential term in (4.18). The remaining term describes the boundary layer 
near r = 1 which has thickness of O ( B )  as opposed to the thickness of O ( d )  for the 

FIGURE 5. The normalized pressure field p/ (pnuQ/A)  of the source-sink flow in the pie- 
shaped basin with a sloping bottom (a = 20 em, 8, = BOO, a = 5.77 x radian). 

corresponding boundary layer in (4.18). The reason for this difference in thickness 
is that interior flow parallel to the rim is generated by the sloping bottom, and 
this parallel flow is usedin the matching of interior and boundary-layer flow. There 
is no corresponding parallel flow in the flat-bottom case, so the two solutions are 
basically different near r = 1. 

The pressure field represented by this equationis calculated for a = 5.77 x low2, 
E4 = 2 x and is shown in figure 5. The corresponding 
intense velocities in the Stommel boundary layers will be compared with experi- 
ments. The solution of p 1  given by (4.32) satisfies only the condition that the 
normal velocity vanishes a t  the side wall. A viscous boundary layer is required 
to adjust the non-slip condition. The general nature of this viscous boundary layer 
has been discussed in previous chapters, and will not be given here. Hence, near 
the wall the solution will lack agreement with the experimental data. 

P = 3.19 x 
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5. Experimental results 
5.1. Methods 

Experiments were carried out to verify the theoretical results. A plexiglas tank 
of the desired shape was placed on a horizontal turntable with its vertical axis 
coincident with the rotating axis. The turntable rotated counter-clockwise, and 
the rotation rate was measured to an accuracy of 0.1 yo. A source of water was 
introduced by a syringe driven by a constant rotating motor. The influx of the 
source was 4.9 x em3 see-l. The variation of the viscosity of the water was 
kept under 1% by controlling the ambient temperature. A camera pointing 
downward was mounted on the turntable to record the flow patterns of the 
experiments. Potassium permanganate was used as a dye to indicate the qualita- 
tive nature of the flow. The precise measurement of the fluid velocities was made 
by a pH indicator technique (Baker 1966). 

The sources of errors in the experimental results were mainly: (i) the viscous 
drag of the wire on the flow passing the wire and (ii) the thermal flow induced by 
the temperature difference between the working fluid and the air in the laboratory. 

The error caused by the viscous drag of the wire was negligible in the measure- 
ment of the velocity component perpendicular to the wire, but became quite 
significant in determining the velocity component parallel to the wire. The effect 
was kept to a minimum by using very fine wire with diameter 2 x lOP3in. This 
error may be eliminated by removing the wire after the dye line is generated. 

A temperature difference of 0.2 "C or higher between the working fluid and the 
surroundings could set up a convection flow, which could be observed when the 
fluid was supposed to be in solid-body rotation. This thermal effect was eliminated 
by setting up the experimental arrangement several hours before the actual runs, 
and allowing the system to come to thermal equilibrium with the room tempera- 
ture. Also, the working fluid was stored in a large bottle in the laboratory, and 
consequently was in thermal equilibrium at the time of use. Only those experi- 
ments in which no significant thermal convection flow was present are reported. 

5.2. Results 

(a)  Flow in acylindricalcontainer. Theexperiment analyzedin $ 3  was carried out 
with a cylindrical container of radius 6.35 em and a rotation rate of 1.25 rad sec-I. 
The height of the fluid in the container was originallx 6 em. A point source was 
introduced just beneath the free surface at  r = 1 and 8 = 0 by a small tube of 
0.5 ern diameter. The influx of the source was 4.9 x ~ m ~ s e c - ~ ,  which gave an 
upwelling velocity of the free surface of 3.86 x cm see-I. The Ekman number 
was 1.98 x 
and the Froude number was 9.8 x 

Potassium permanganate was used in the source as a dye for visualizing the 
nature of the distribution of the transport. The source was distributed along the 
E )  layer, and was smoothed out by the O(E8) interior horizontal flow. The fluid 
was supplied to the bottom Ekman layer via the E* layer. The picturein figure 6 (a )  
(plate 1) indicates qualitatively this type of behaviour. The dyed fluid from the 
source distributed vert,ically as a line source and spread along the wall and in the 

with the chosen parameters. The Rossby number was 0.55 x 
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bottom Ekman layer. Pictures of the lines made by pH indicator technique in 
figures 6 ( b )  and (c)  (plate 1) were taken by applying the d.c. voltage pulse at  
times separated by 60 see. The theoretical, normalized zonal velocity V/(c/E*), 
indicated by (3.2) with the E* layer correction, is compared with the experimental 
result in figure 7. A good agreement is clearly indicated. The small deviation (less 
than 5 yo) may be due to the error in measurement of the position of the dye line 
( & 0.05 em). One can see in figure 6 (c) that the viscous drag of the wire is more 
pronounced near the centre, where the zonal velocity is very small. 

0.5 1 

r 

FIGURE 7.  The comparison of the theoretical and experimental zonal velocity in the SOUITS- 

sink flow in the rotating cylindrical container shown in figure 6. __ , theoretical value; 
, experimental data. 

(b )  Plow in pie-shaped basin. Experiments were set up to verify the results 
obtained in $ 4  for the source-sink flow, in which bottom friction dominates over 
the side-wall viscous effect. A pie-shaped basin of 60" width, radius 20cm and 
height 15 em was used. The initial height of the fluid was 6 em. The rotation rate 
was chosen as 1.25radsec-l, which gave F = 3-19 x E = 2.0 x 
E*/2F = 7.01 x and E*/2Fh* = 2.0. Hence, the condition that the latter 
parameter be much larger than unity was not really satisfied. The source at the 
apex was introduced just beneath the free surface by a tube of diameter 0.5 cm. 
The strength of the source, 4.9 x om3 sec-l, gave an upwelling of the free 
surface of 2-34 x 10-4 em see-1. The Rossby number of the flow was 3 x lo-*, which 
indicated that non-linear effects were not important. 

For the experiment in the pie-shaped basin a net of printed platinum wires was 
introduced, so that the pH indicator method would exhibit a pattern of dashed 
lines, as shown in figure 8(a) (plate l), when a small voltage was applied. The 
dashed lines enabled one to  evaluate the velocity components in both the r and 
the 0 directions. The flow pattern which results when pulses are separated by 
60 sec intervals is shown in figure 8 ( c )  (plate 1). The streamline pattern agrees 
with the corresponding pressure field pattern of figure 3. 
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Measurements of the velocities were restricted to the flow in the boundary layer, 
because the interior flow was too slow to  be measured accurately. Measured profiles 
of u and u us. 0 near 6' = 0 and along r = 0.55 (11 cm) are compared in figure 9 
with the theoretical values calculated from (4.4) and (4.22). The corresponding 
comparison for u and 21 us. r near r = 1 and along 0 = 30" is shown in figure 10. 

Radial velocitv ( 2 1 )  

30' / 6' 1 1 1 1 1 1  12" 1 R y 4  
I I  

I 
Zonal velocity (u) 

FIGURE 9. The comparison of the theoretical and experimental velocities along r = I1 ern 
( r  = 0.55) ncar the western boundary (0 = 0) of the source-sink flow in a pie-shaped basin. 
_- , theoretical valiio ; , experimental data. 

Zonal velocity (0) 

-1 - Radial velocity (u) 

FIGURE 10. The comparison of the theoretical and experimental velocities along 0 = 30" 
near tho southern boundary (outer rim) of the source-sink flow in a pie-shaped basin. 
---, theoretical value; 0 ,  experimental data. 

For tho lattor comparison, the theoretical value is calculated from the last term 
in (,%.IS), together with the E* layer correction, to satisfy the non-slip condition. 

The corresponding results for the sloping bottom case are shown in figures 1 I 
(plate l),  12 and 13. Here, the effects of the E t  layer have been omitted in the 
calculations, so that the tangential velocity cannot match the non-slip condition 
a t  the boundary. 
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The general agreement between theory and experiment is quite good. The 
analytical solutions are not complete, because all of the boundary-layer cor- 
rections have not been included. For the flat-bottom case the more important 
boundary-layer effects have been taken into account and the agreement is better. 
The uncertainty in the measurement of the displacement of the dye is 0.05 om, 
and can also contribute to the lack of agreement. 

The experimental verification of the effect of the curved eastern boundary on 

- 1 Zonal velocity (0) t 7  a m -  

FIGURE 12. The comparison of the theoretical and experimental velocities along r = 10 ern 
(r  = +) near the western boundary (0 = 0) of the source-sink flow in the pie-shaped basin with 
a slopinglbottom. The theoretical solution is for the interior variables only ; hence, the lack of 
agreement for the radial velocity near 0 = 0. --, theoretical value; 0 ,  experimental data. 

FIGURE 13. The comparison of the thcorctical and experimental velocities along 0 = 30" 
near the southern boundary (outer rim) of the sourcc-sink flow in the pie-shaped basin with 
a sloping bottom. The theoretical solution is for the interior variables only; honce, the lack of 
agreement for the zonal velocity near r = 1.  -, theoretical value ; , experimental data. 
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the interior flow away from the western boundary was carried out in the basin 
with the flat bottom. Three pie-shaped tanks of radius 20 cm were constructed, 
with the curved eastern boundary expressed by 

(ii) 

(iii) 

Results using the pH indicator method in each basin are shown in figure 14 
(plate 1).  A small dot was insulated in the platinum wire near the eastern 
boundary, so that a discontinued marker line will appear when a small d.c. voltage 
was applied. The curved lines in figure 14 were photographed 5min after the 
pulse was a.pplied. The figures show initial and final position of the dye line. The 
experiment was performed at  the rotation rate of 1.25 rad see-1, with the strength 
of the influx source 4.9 x em3 sec-l. The insulated point along the wire was 
located at  (14 em, 45'). Fluid initially a t  the point (12 em, 45') will move in a 
direction inclined 0", + 25" and - 25" to the radial line through the point for the 
curved eastern boundaries given by (i) (ii) and (iii), respectively. This behaviour 
was observed, and a qualitative verification is evident in figure 14. 

6. Gulf Stream separation experiments 
Current charts show the separation of the Gulf Stream and the Kuroshio 

Current from the coast (see Fuglister 1963; Uda 1964). Although baroclinic 
effects must be important in the behaviour of these intense currents, particularly 
with regard to their separation, a partial study of this phenomenon can be made 
in the laboratory. The interior flow generated by sources and sinks can simulate 
the effect of a wind-stress at  the bottom of the Ekman layer and the variation of 
free surface height serves the same role as the p-effect in oceanic flows. 

Munk (1950), Munk & Carrier (1950), Sarkisyan (1954) and Bryan (1963) have 
shown that the mean wind patterns over the oceans can generate circulations in 
which the Gulf Stream and Kuroshio will flow outward from the coast just north 
of the subtropical, high-pressure, wind gyre. Warren (1962) and Holland (1967) 
have shown that these intense currents will separate from the coast when they 
encounter rising bottom topography downstream. 

To test these theoretical results two experiments have been performed. 
(i) A source of fluid was introduced at  the apex of a pie-shaped basin with 

lateral boundaries at  r = 20 em, 0 = 0 and i9 = 60" and with a sloping bottom in 
the southwestern corner (figure 15, plate 2) .  The rotation rate was 1.25 rad see-l, 
and a source with a flux of 4.9 x em3 see-l was introduced just beneath the 
free surface by a tube of 0.5cm diameter. Hence, the Ekman number was 
E = 2 x 10-5 and the Froude number was P = 3.19 x 10-2. Pulses of small voltage 
were applied to the three printed wires, shown in figure 15, at 60sec intervals, 
and the flow was determined from the pattern of dashed lines. The thin line 
paralleling the boundary 6' = 60' shows the junction of the sloping bottom with 
the flat bottom. The figure gives a clear indication that the intense western 
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boundary current separates from the 6 = 0 boundary and flows parallel to the 
thin line. This behaviour corresponds to that expected from the studies of Warren 
and Holland. 

(ii) A concentrated sink of fluid at (gem, in-) and a concentrated source at 
(15 cm, in-) were introduced into the pie-shaped basin with the flat bottom. The 
source and sink are meant to simulate the annual mean atmospheric pressure 
patterns over either the N. Atlantic or the N. Pacific. The flux through the source 
and the sink was 4.9 x 10-2 cm3sec-l, and the rotation rate was 2radsec-1. 
Figure 16 (plate 2) shows the flow pattern as exhibited by the pH indicator method 
when the printed wires (shown by the two dashed straight lines) were pulsed at  
30 sec intervals. Separation of the intense western boundary currents from the 
western boundary is evident. 

We gratsfully ackowledge the support of the National Science Foundation 
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FIGURE 6. The experiments on the source-sink flow in a rotating cylindrical container. 

FIGURE 8. The experiments on the source-sink flow in a pie-shaped basin. The pattern of 
trajectories can be determined by the movement of the broken lines. Photographs of the 
patterns were made when the wire was pulsed (at 60 sec intervals). 

FIGURE 11. The experiments on the source-sink flow in a pie-shaped basin 
with a sloping bottom. 

FIGURE 14. The interior flow patterns due to different shapes of the eastern boundary. 
The curved indicator represents the position of a line of fluid 6 min after it was generated 
along the straight line joining the end-points. The open dash indicates tho zonal displace- 
ment of the fluid. 

KUO AND VERONIS (Fucing p .  464) 



Journal of Fluid Mechanics, Vol. 45, part 3 Plute 2 

FIGURE 15. The flow pattorn due to the source-sink flow in thc pic-shaped basin with a 
partially sloping bottom. The intense curront leaves the western boundary (0 = 0) at 
P = 0.5 and flows parallel to the line joining the sloping region to tho bottom. 

FIGURE 16. The flow pattern due to the concentrated source and sink in a pie-shaped basin. 
The converging western boundary currents leave the boundary and move into the interior 
in a region between the source and sink. 


